First application of the Oslo method in inverse kinematics
-
Published:2020-02
Issue:2
Volume:56
Page:
-
ISSN:1434-6001
-
Container-title:The European Physical Journal A
-
language:en
-
Short-container-title:Eur. Phys. J. A
Author:
Ingeberg V. W.ORCID, Siem S., Wiedeking M., Sieja K., Bleuel D. L., Brits C. P., Bucher T. D., Dinoko T. S., Easton J. L., Görgen A., Guttormsen M., Jones P., Kheswa B. V., Khumalo N. A., Larsen A. C., Lawrie E. A., Lawrie J. J., Majola S. N. T., Malatji K. L., Makhathini L., Maqabuka B., Negi D., Noncolela S. P., Papka P., Sahin E., Schwengner R., Tveten G. M., Zeiser F., Zikhali B. R.
Abstract
AbstractThe $$\gamma $$γ-ray strength function ($$\gamma $$γSF) and nuclear level density (NLD) have been extracted for the first time from inverse kinematic reactions with the Oslo method. This novel technique allows measurements of these properties across a wide range of previously inaccessible nuclei. Proton–$$\gamma $$γ coincidence events from the $$\mathrm {d}(^{86}\mathrm {Kr}, \mathrm {p}\gamma )^{87}\mathrm {Kr}$$d(86Kr,pγ)87Kr reaction were measured at iThemba LABS and the $$\gamma $$γSF and NLD in $$^{87}\mathrm {Kr}$$87Kr was obtained. The low-energy region of the $$\gamma $$γSF is compared to shell-model calculations, which suggest this region to be dominated by M1 strength. The $$\gamma $$γSF and NLD are used as input parameters to Hauser–Feshbach calculations to constrain $$(\mathrm {n},\gamma )$$(n,γ) cross sections of nuclei using the TALYS reaction code. These results are compared to $$^{86}\mathrm {Kr}(n,\gamma )$$86Kr(n,γ) data from direct measurements.
Funder
European Cooperation in Science and Technology National Research Foundation Lawrence Livermore National Laboratory Norges Forskningsråd International Atomic Energy Agency FP7 Ideas: European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference65 articles.
1. H.A. Bethe, An attempt to calculate the number of energy levels of a heavy nucleus. Phys. Rev. 50, 332–341 (1936). https://doi.org/10.1103/PhysRev.50.332. https://link.aps.org/doi/10.1103/PhysRev.50.332 2. G.A. Bartholomew, E.D. Earle, A.J. Ferguson, J.W. Knowles, M.A. Lone, Gamma-Ray Strength Functions, pages 229–324. Springer US, Boston, MA, (1973). ISBN 978-1-4615-9044-6. https://doi.org/10.1007/978-1-4615-9044-6_4 3. T. Rauscher, N. Dauphas, I. Dillmann, C. Fröhlich, Z. Fülöp, G. Gyürky, Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep. Prog. Phys., 76(6), 066201, (2013). http://stacks.iop.org/0034-4885/76/i=6/a=066201 4. M. Arnould, S. Goriely, The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status. Phys. Rep., 384(1), 1–84, (2003). ISSN 0370-1573. https://doi.org/10.1016/S0370-1573(03)00242-4. http://www.sciencedirect.com/science/article/pii/S0370157303002424 5. M. Arnould, S. Goriely, K. Takahashi, The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries. Phys. Rep., 450(4), 97–213, (2007). ISSN 0370-1573. https://doi.org/10.1016/j.physrep.2007.06.002. http://www.sciencedirect.com/science/article/pii/S0370157307002438
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|