Author:
Auffray Charles,Noble Denis,Nottale Laurent,Turner Philip
Abstract
AbstractIn this paper we present a review of progress in addressing the challenge to understand and describe the vast complexity and multi-level organisation associated with biological systems. We begin with a review of past and current approaches, key lessons, and unresolved challenges, which require a new conceptual framework to address them. After summarizing the core of the problem, which is linked to computational complexity, we review recent developments within the theoretical framework of scale relativity, which offers new insights into the emergence of structure and function (at multiple scales), providing a new integrative approach to biological systems. The theoretical framework describes the critical role of thermodynamics and quantum vacuum fluctuations in the emergence of charge-induced macroscopic quantum fields (effectively a new quantum field theory) at multiple scales, which underpin a macroscopic quantum description of biological systems as a complex exemplar of condensed matter. The theory is validated through a new biomimetic experimental approach, which leads to the emergence of plant and individual cell-like structures with the intrinsic capacity to divide, differentiate and form multicellular structures. We discuss how this theoretical framework could be applied to extend our understanding of cardiac systems biology and physiology, and challenges such as cancer and neurodegenerative disease. We also consider the potential of these new insights to support a new approach to the development of emerging quantum technologies.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献