Detailed modeling of odd–even staggering in fission-fragment charge distributions

Author:

Möller Peter,Schmitt Christelle

Abstract

AbstractDuring the last 10 years or so the Brownian shape-motion (BSM) model has been used in numerous calculations of fission-fragment mass and charge distributions with encouraging agreement with experimental measurements. In this model the structure obtained in the fission-fragment distributions is entirely a consequence of the structures in the calculated five-dimensional (5D) potential-energy surfaces. The potential-energy model until recently did not accommodate the influence of the emerging fragment properties on the calculated potential energy. Therefore there were no odd-even effects in the calculated fission-fragment distributions. Recent extensions of the potential-energy model allow properties of the nascent fragments to be included in the potential-energy model. Application of the BSM model to execute random walks on these more detailed potential-energy surfaces led to calculated fission-fragment yields that exhibited odd-even effects, which “by eye” indicated reasonable agreement with experimental data. The present work goes a step further with a quantitative comparison between experimental and theoretical results based on the global and local odd-even staggering observables. Theoretical calculations and experimental observations both show that pairing effects and enhancement of two-nucleon relative to one-nucleon transfer in heavy-ion collisions decrease with excitation energy and implementing a damping of these quantities with excitation energy leads to improved agreement with experiment. Characteristic variations of the local staggering with charge split seen in the experimental data are also present in the calculated results.

Funder

Lund University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3