Direct high-precision measurement of the mass difference of $$^{77}$$As–$$^{77}$$Se related to neutrino mass determination
-
Published:2024-05-08
Issue:5
Volume:60
Page:
-
ISSN:1434-601X
-
Container-title:The European Physical Journal A
-
language:en
-
Short-container-title:Eur. Phys. J. A
Author:
Ge Z.ORCID, Eronen T.ORCID, Ramalho M.ORCID, de Roubin A.ORCID, Nesterenko D. A.ORCID, Kankainen A.ORCID, Beliuskina O.ORCID, de Groote R.ORCID, Geldhof S.ORCID, Gins W.ORCID, Hukkanen M.ORCID, Jokinen A.ORCID, Koszorús Á.ORCID, Kotila J.ORCID, Kostensalo J.ORCID, Moore I. D.ORCID, Pirinen P.ORCID, Raggio A.ORCID, Rinta-Antila S.ORCID, Sevestrean V. A.ORCID, Suhonen J.ORCID, Virtanen V., Zadvornaya A.ORCID
Abstract
AbstractThe first direct determination of the ground-state-to-ground-state $${\beta ^{-}}$$
β
-
-decay Q-value of $$^{77}$$
77
As to $$^{77}$$
77
Se was performed by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The resulting Q-value is 684.463(70) keV, representing a remarkable 24-fold improvement in precision compared to the value reported in the most recent Atomic Mass Evaluation (AME2020). With the significant reduction of the uncertainty of the ground-state-to-ground-state Q-value and knowledge of the excitation energies in $$^{77}$$
77
Se from $$\gamma $$
γ
-ray spectroscopy, the ground-state-to-excited-state Q-value of the transition $$^{77}$$
77
As (3/2$$^{-}$$
-
, ground state) $$\rightarrow $$
→
$$^{77}$$
77
Se$$^{*}$$
∗
(5/2$$^{+}$$
+
, 680.1035(17) keV) was refined to be 4.360(70) keV. We confirm that this potential low Q-value $${\beta ^{-}}$$
β
-
-decay transition for neutrino mass determination is energetically allowed at a confidence level of about 60$$\sigma $$
σ
. Nuclear shell-model calculations with two well-established effective Hamiltonians were used to estimate the partial half-life for the low Q-value transition. The half-life was found to be of the order of 10$$^{9}$$
9
years for this first-forbidden non-unique transition. Since the half-life of $$^{77}$$
77
As is only $$\approx $$
≈
2 days, usage of it as source for rare-event experiments searching for the electron antineutrino mass would be challenging.
Funder
European Union’s Horizon Europe Research and Innovation Programme Research Council of Finland EU Horizon 2020 research and innovation program European Union’s Horizon 2020 research and innovation programme
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Y. Fukuda, T. Hayakawa, E. Ichihara, K. Inoue, K. Ishihara, H. Ishino, Y. Itow, T. Kajita, J. Kameda, S. Kasuga, K. Kobayashi, Y. Kobayashi, Y. Koshio, M. Miura, M. Nakahata, S. Nakayama, A. Okada, K. Okumura, N. Sakurai, M. Shiozawa, Y. Suzuki, Y. Takeuchi, Y. Totsuka, S. Yamada, M. Earl, A. Habig, E. Kearns, M.D. Messier, K. Scholberg, J.L. Stone, L.R. Sulak, C.W. Walter, M. Goldhaber, T. Barszczxak, D. Casper, W. Gajewski, P.G. Halverson, J. Hsu, W.R. Kropp, L.R. Price, F. Reines, M. Smy, H.W. Sobel, M.R. Vagins, K.S. Ganezer, W.E. Keig, R.W. Ellsworth, S. Tasaka, J.W. Flanagan, A. Kibayashi, J.G. Learned, S. Matsuno, V.J. Stenger, D. Takemori, T. Ishii, J. Kanzaki, T. Kobayashi, S. Mine, K. Nakamura, K. Nishikawa, Y. Oyama, A. Sakai, M. Sakuda, O. Sasaki, S. Echigo, M. Kohama, A.T. Suzuki, T.J. Haines, E. Blaufuss, B.K. Kim, R. Sanford, R. Svoboda, M.L. Chen, Z. Conner, J.A. Goodman, G.W. Sullivan, J. Hill, C.K. Jung, K. Martens, C. Mauger, C. Mc Grew, E. Sharkey, B. Viren, C. Yanagisawa, W. Doki, K. Miyano, H. Okazawa, C. Saji, M. Takahata, Y. Nagashima, M. Takita, T. Yamaguchi, M. Yoshida, S.B. Kim, M. Etoh, K. Fujita, A. Hasegawa, T. Hasegawa, S. Hatakeyama, T. Iwamoto, M. Koga, T. Maruyama, H. Ogawa, J. Shirai, A. Suzuki, F. Tsushima, M. Koshiba, M. Nemoto, K. Nishijima, T. Futagami, Y. Hayato, Y. Kanaya, K. Kaneyuki, Y. Watanabe, D. Kielczewska, R.A. Doyle, J.S. George, A.L. Stachyra, L.L. Wai, R.J. Wilkes, K.K. Young, Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81(8), 1562–1567 (1998) 2. S.N.O. Collaboration, Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89(1), 1–6 (2002) 3. G. Martina, L. Massimiliano, Status of neutrino properties and future prospects—cosmological and astrophysical constraints. Front. Phys. (2018). https://doi.org/10.3389/fphy.2017.00070 4. J. Suhonen, O. Civitarese, Weak-interaction and nuclear-structure aspects of nuclear double beta decay. Phys. Rep. 300(3–4), 123–214 (1998) 5. F.T. Avignone, S.R. Elliott, J. Engel, Double beta decay, Majorana neutrinos, and neutrino mass. Rev. Mod. Phys. 80(2), 481–516 (2008)
|
|