Estimating scattering potentials in inverse problems with Volterra series and neural networks

Author:

Balassa Gábor

Abstract

AbstractInverse problems often occur in nuclear physics, when an unknown potential has to be determined from the measured cross sections, phase shifts or other observables. In this paper, a data-driven numerical method is proposed to estimate the scattering potentials, using data, that can be measured in scattering experiments. The inversion method is based on the Volterra series representation, and is extended by a neural network structure to describe problems, which require a more robust estimation. The Volterra series method is first used to describe the one-dimensional scattering problem, where the transmission coefficients, and the phase shifts are used as inputs to determine the unknown potentials in the Fourier domain. In the second example the scattering process described by the radial Schrödinger equation is used to estimate the scattering potentials from the energy dependence of the phase shifts, where neural networks are used to describe the scattering problem. At the end, to show the capabilities of the proposed models, real-life data is used to estimate the $${}_{}^3 S_1$$ 3 S 1 NN potential with the neural network approach from measured phase shifts, where a few percent relative match is obtained between the measured values and the model calculations.

Funder

Országos Tudományos Kutatási Alapprogramok

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3