First direct limit on the 334 keV resonance strength in $$^{22}$$Ne($$\alpha $$,$$\gamma $$)$$^{26}$$Mg reaction
-
Published:2022-10-07
Issue:10
Volume:58
Page:
-
ISSN:1434-601X
-
Container-title:The European Physical Journal A
-
language:en
-
Short-container-title:Eur. Phys. J. A
Author:
Piatti D., Masha E., Aliotta M., Balibrea-Correa J., Barile F., Bemmerer D.ORCID, Best A., Boeltzig A., Broggini C., Bruno C. G., Caciolli A., Cavanna F., Chillery T., Ciani G. F., Compagnucci A., Corvisiero P., Csedreki L., Davinson T., Depalo R., Leva A. di, Elekes Z., Ferraro F., Fiore E. M., Formicola A., Fülöp Zs., Gervino G., Guglielmetti A., Gustavino C., Gyürky Gy., Imbriani G., Junker M., Lugaro M., Marigo P., Menegazzo R., Mossa V., Pantaleo F. R., Paticchio V., Perrino R., Prati P., Rapagnani D., Schiavulli L., Skowronski J., Stöckel K., Straniero O., Szücs T., Takács M. P., Zavatarelli S.
Abstract
AbstractIn stars, the fusion of $$^{22}$$
22
Ne and $$^4$$
4
He may produce either $$^{25}$$
25
Mg, with the emission of a neutron, or $$^{26}$$
26
Mg and a $$\gamma $$
γ
ray. At high temperature, the ($$\alpha ,n$$
α
,
n
) channel dominates, while at low temperature, it is energetically hampered. The rate of its competitor, the $$^{22}$$
22
Ne($$\alpha $$
α
,$$\gamma $$
γ
)$$^{26}$$
26
Mg reaction, and, hence, the minimum temperature for the ($$\alpha ,n$$
α
,
n
) dominance, are controlled by many nuclear resonances. The strengths of these resonances have hitherto been studied only indirectly. The present work aims to directly measure the total strength of the resonance at $$E_{\text {r}}$$
E
r
= 334 keV (corresponding to $$E_{\text {x}}$$
E
x
= 10949 keV in $$^{26}$$
26
Mg). The data reported here have been obtained using high intensity $$^4$$
4
He$$^+$$
+
beam from the INFN LUNA 400 kV underground accelerator, a windowless, recirculating, 99.9% isotopically enriched $$^{22}$$
22
Ne gas target, and a 4$$\pi $$
π
bismuth germanate summing $$\gamma $$
γ
-ray detector. The ultra-low background rate of less than 0.5 counts/day was determined using 63 days of no-beam data and 7 days of $$^4$$
4
He$$^+$$
+
beam on an inert argon target. The new high-sensitivity setup allowed to determine the first direct upper limit of 4.0$$\,\times \,$$
×
10$$^{-11}$$
-
11
eV (at 90% confidence level) for the resonance strength. Finally, the sensitivity of this setup paves the way to study further $$^{22}$$
22
Ne($$\alpha $$
α
,$$\gamma $$
γ
)$$^{26}$$
26
Mg resonances at higher energy.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal European Cooperation in Science and Technology European Commission Science and Technology Facilities Council Helmholtz-Gemeinschaft Deutscher Akademischer Austauschdienst Instituto Nazionale di Fisica Nucleare Ministero dell’Istruzione, dell’Università e della Ricerca Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference71 articles.
1. R. Longland, C. Iliadis, A.I. Karakas, Phys. Rev. C 85, 065809 (2012) 2. L.S. The, M.F. El Eid, B.S. Meyer, Astrophys. J. 655, 1058 (2007). (astro-ph/0609788) 3. A.I. Karakas, M.A. Lugaro, M. Wiescher, J. Görres, C. Ugalde, Astrophys. J. 643, 471 (2006) 4. D.D. Clayton, Handbook of Isotopes in the Cosmos: Hydrogen to Gallium (Cambridge University Press, Cambridge, 2003) 5. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|