Abstract
AbstractWe compute singlet pairing gaps and critical temperatures in pure neutron matter with different many-body approximations. Medium effects tend to reduce gaps and critical temperatures compared to the standard BCS ansatz. In the mean-field approximation, the ratio of these two quantities remains constant across a wide range of densities. This constant ratio is close to the universal prediction of BCS theory, whether three-neutron interactions are included or not. Using a more sophisticated many-body approach that incorporates the effect of short-range correlations in pairing properties, we find that the gap to critical temperature ratio in the low-density regime is substantially larger than the BCS prediction, independently of the interaction. In this region, our results are relatively close to experiments and theoretical calculations from the unitary Fermi gas. We also find evidence for a different density dependence of zero-temperature gaps and critical temperatures in neutron matter.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献