Fission-stability of high-K states in superheavy nuclei

Author:

Khuyagbaatar J.

Abstract

AbstractFission is the one of the primary radioactive decay modes for the heaviest nuclei and ultimately determines the existence of the heaviest elements on a macroscopic time scale, e.g., $$\ge 10^{-14}$$ 10 - 14  s. The present experimental data on the decay properties of the heaviest nuclei with proton numbers 102–118 and/or of neutron numbers up to 177 show that fission occurs occasionally. This confirms that shell structure plays an essential role for their stability against fission. The shell effect on fission manifests in both collective and single-particle ways, which can experimentally be studied in decays of even–even, odd-A and odd–odd nuclei. At the same time, high-K states formed in couplings of quasiparticles are also known to be stable against fission. However, detailed knowledge and theoretical descriptions on a retardation effect/strength of high-K quantum number on fission are still scarce. In the present work, fission from high-K states are discussed and described within the semi-empirical approach. Fission half-lives are calculated for various high-K states, which have been theoretically predicted to exist in Fm-Rf (Z = 100–104) and Hs-Ds (Z = 108–112). The results are found to be in line with the available experimental findings, and also leading to different intriguing predictions, e.g., high-K states in superheavy nuclei tend to be more stable against fission compared to their ground states.

Funder

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3