Enhancing robustness of noisy qutrit teleportation with Markovian memory

Author:

Xu RuiQing,Zhou Ri-GuiORCID,Li YaoChong,Jiang SheXiang,Ian Hou

Abstract

AbstractQuantum teleportation is the fundamental communication unit in quantum communication. Here, a three-level system is selected for storing and transmitting quantum information, due to its unique advantages, such as lower cost than a higher-level system and higher capacity and security than a two-level system. It is known that the key procedure for perfect teleportation is the distribution of entanglement through quantum channel. However, amounts of noise existing in the quantum channel may interfere the entangled state, causing the degradation of quantum entanglement. In the physical implementations of quantum communication schemes, noise acting on the carriers of successive transmissions often exhibits some correlations, which is the so called quantum memory channel. In this paper, a memory channel model during the entanglement distribution phase is constructed and the uniform expression of the evolution of a two-qutrit entangled state under different kinds of correlated noise is derived. Finally, Pauli noise and amplitude damping noise as the typical noise source are considered to analyze the influence of memory effects of noise on qutrit teleportation. It is expected to show that three-level teleportation under these two types of channels can generally enhance the robustness to noise if the Markovian correlations of quantum channel are taken into consideration.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Project

FDCT of Macau

University of Macau

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3