The deep space quantum link: prospective fundamental physics experiments using long-baseline quantum optics
-
Published:2022-10-08
Issue:1
Volume:9
Page:
-
ISSN:2662-4400
-
Container-title:EPJ Quantum Technology
-
language:en
-
Short-container-title:EPJ Quantum Technol.
Author:
Mohageg Makan,Mazzarella Luca,Anastopoulos Charis,Gallicchio Jason,Hu Bei-Lok,Jennewein Thomas,Johnson Spencer,Lin Shih-Yuin,Ling Alexander,Marquardt Christoph,Meister Matthias,Newell Raymond,Roura Albert,Schleich Wolfgang P.,Schubert Christian,Strekalov Dmitry V.,Vallone Giuseppe,Villoresi Paolo,Wörner Lisa,Yu Nan,Zhai Aileen,Kwiat Paul
Abstract
AbstractThe National Aeronautics and Space Administration’s Deep Space Quantum Link mission concept enables a unique set of science experiments by establishing robust quantum optical links across extremely long baselines. Potential mission configurations include establishing a quantum link between the Lunar Gateway moon-orbiting space station and nodes on or near the Earth. This publication summarizes the principal experimental goals of the Deep Space Quantum Link. These goals, identified through a multi-year design study conducted by the authors, include long-range teleportation, tests of gravitational coupling to quantum states, and advanced tests of quantum nonlocality.
Funder
National Aeronautics and Space Administration Jet Propulsion Laboratory
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Control and Systems Engineering
Reference244 articles.
1. Bedington R, Arrazola JM, Ling A. Progress in satellite quantum key distribution. npj Quantum Inf. 2017. https://doi.org/10.1038/s41534-017-0031-5. 2. Sidhu JS, Joshi SK, Gündoğan M, Brougham T, Lowndes D, Mazzarella L, Krutzik M, Mohapatra S, Dequal D, Vallone G, Villoresi P, Ling A, Jennewein T, Mohageg M, Rarity JG, Fuentes I, Pirandola S, Oi DKL. Advances in space quantum communications. IET Quantum Communication. 2021. https://doi.org/10.1049/qtc2.12015. 3. Kaltenbaek R, Acin A, Bacsardi L, Bianco P, Bouyer P, Diamanti E, Marquardt C, Omar Y, Pruneri V, Rasel E, Sang B, Seidel S, Ulbricht H, Ursin R, Villoresi P, van den Bossche M, von Klitzing W, Zbinden H, Paternostro M, Bassi A. Quantum technologies in space. Exp Astron. 2021. https://doi.org/10.1007/s10686-021-09731-x. 4. Belenchia A, Carlesso M, Bayraktar Ö, Dequal D, Derkach I, Gasbarri G, Herr W, Li YL, Rademacher M, Sidhu J, Oi DK, Seidel ST, Kaltenbaek R, Marquardt C, Ulbricht H, Usenko VC, Wörner L, Xuereb A, Paternostro M, Bassi A. Quantum physics in space. 2021. arXiv:2108.01435. 5. Rideout D, Jennewein T, Amelino–Camelia G, Demarie TF, Higgins BL, Kempf A, Kent A, Laflamme R, Ma X, Mann RB, Martin-Martinez E, Menicucci NC, Moffat J, Simon C, Sorkin R, Smolin L, Terno DR. Fundamental quantum optics experiments conceivable with satellites–reaching relativistic distances and velocities. Class Quantum Gravity. 2012;29(22):224011.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|