An intelligent threshold selection method to improve orbital angular momentum-encoded quantum key distribution under turbulence

Author:

Li Jia-Hao,Tang Jie,Wang Xing-Yu,Xue Yang,Yu Hui-Cun,Deng Zhi-Feng,Cao Yue-Xiang,Liu Ying,Wu Dan,Hu Hao-Ran,Wang Ya,Lun Hua-Zhi,Wei Jia-Hua,Zhang Bo,Liu Bo,Shi Lei

Abstract

AbstractHigh-dimensional quantum key distribution (HD-QKD) encoded by orbital angular momentum (OAM) presents significant advantages in terms of information capacity. However, perturbations caused by free-space atmospheric turbulence decrease the performance of the system by introducing random fluctuations in the transmittance of OAM photons. Currently, the theoretical performance analysis of OAM-encoded QKD systems exists a gap when concerning the statistical distribution under the free-space link. In this article, we analyzed the security of QKD systems by combining probability distribution of transmission coefficient (PDTC) of OAM with decoy-state BB84 method. To address the problem that the invalid key rate is calculated in the part transmittance interval of the post-processing process, an intelligent threshold method based on neural network is proposed to improve OAM-encoded QKD, which aims to conserve computing resources and enhance system efficiency. Our findings reveal that the ratio of root mean square (RMS) OAM-beam radius to Fried constant plays a crucial role in ensuring secure key generation. Meanwhile, the training error of neural network is at the magnitude around 10−3, indicating the ability to predict optimization parameters quickly and accurately. Our work contributes to the advancement of parameter optimization and prediction for free-space OAM-encoded HD-QKD systems. Furthermore, it provides valuable theoretical insights to support the development of free-space experimental setups.

Funder

Science and technology innovation program of Hunan Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3