Efficient realization of quantum algorithms with qudits

Author:

Nikolaeva Anastasiia S.,Kiktenko Evgeniy O.,Fedorov Aleksey K.

Abstract

AbstractThe development of a universal fault-tolerant quantum computer that can solve efficiently various difficult computational problems is an outstanding challenge for science and technology. In this work, we propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits). Our method uses a transpilation of a circuit in the standard qubit form, which depends on the characteristics of a qudit-based processor, such as the number of available qudits and the number of accessible levels. This approach provides a qubit-to-qudit mapping and comparison to a standard realization of quantum algorithms highlighting potential advantages of qudits. We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set. We then illustrate our method by considering an example of an efficient implementation of a 6-qubit quantum algorithm with qudits. In this particular example, we demonstrate how using qudits allows a decreasing amount of two-body interactions in the qubit circuit implementation. We expect that our findings are of relevance for ongoing experiments with noisy intermediate-scale quantum devices that operate with information carriers allowing qudit encodings, such as trapped ions and neutral atoms, as well as optical and solid-state systems.

Funder

Russian Science Foundation

National University of Science and Technology

Leading Research Center on Quantum Computing

Publisher

Springer Science and Business Media LLC

Reference88 articles.

1. Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov AS, Endres M, Greiner M, Vuletić V, Lukin MD. Nature. 2017;551:579. https://doi.org/10.1038/nature24622.

2. Ebadi S, Wang TT, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho WW, Choi S, Sachdev S, Greiner M, Vuletić V, Lukin MD. Nature. 2021;595:227. https://doi.org/10.1038/s41586-021-03582-4.

3. Zhang J, Pagano G, Hess PW, Kyprianidis A, Becker P, Kaplan H, Gorshkov AV, Gong ZX, Monroe C. Nature. 2017;551:601. https://doi.org/10.1038/nature24654.

4. Barredo D, Lienhard V, de Léséleuc S, Lahaye T, Browaeys A. Nature. 2018;561:79. https://doi.org/10.1038/s41586-018-0450-2.

5. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan MP, Hartmann MJ, Ho A, Hoffmann M, Huang T, Humble TS, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov PV, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean JR, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E, Petukhov A, Platt JC, Quintana C, Rieffel EG, Roushan P, Rubin NC, Sank D, Satzinger KJ, Smelyanskiy V, Sung KJ, Trevithick MD, Vainsencher A, Villalonga B, White T, Yao ZJ, Yeh P, Zalcman A, Neven H, Martinis JM. Nature. 2019;574:505. https://doi.org/10.1038/s41586-019-1666-5.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3