Efficient realization of quantum algorithms with qudits
-
Published:2024-06-26
Issue:1
Volume:11
Page:
-
ISSN:2662-4400
-
Container-title:EPJ Quantum Technology
-
language:en
-
Short-container-title:EPJ Quantum Technol.
Author:
Nikolaeva Anastasiia S.,Kiktenko Evgeniy O.,Fedorov Aleksey K.
Abstract
AbstractThe development of a universal fault-tolerant quantum computer that can solve efficiently various difficult computational problems is an outstanding challenge for science and technology. In this work, we propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits). Our method uses a transpilation of a circuit in the standard qubit form, which depends on the characteristics of a qudit-based processor, such as the number of available qudits and the number of accessible levels. This approach provides a qubit-to-qudit mapping and comparison to a standard realization of quantum algorithms highlighting potential advantages of qudits. We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set. We then illustrate our method by considering an example of an efficient implementation of a 6-qubit quantum algorithm with qudits. In this particular example, we demonstrate how using qudits allows a decreasing amount of two-body interactions in the qubit circuit implementation. We expect that our findings are of relevance for ongoing experiments with noisy intermediate-scale quantum devices that operate with information carriers allowing qudit encodings, such as trapped ions and neutral atoms, as well as optical and solid-state systems.
Funder
Russian Science Foundation National University of Science and Technology Leading Research Center on Quantum Computing
Publisher
Springer Science and Business Media LLC
Reference88 articles.
1. Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov AS, Endres M, Greiner M, Vuletić V, Lukin MD. Nature. 2017;551:579. https://doi.org/10.1038/nature24622. 2. Ebadi S, Wang TT, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho WW, Choi S, Sachdev S, Greiner M, Vuletić V, Lukin MD. Nature. 2021;595:227. https://doi.org/10.1038/s41586-021-03582-4. 3. Zhang J, Pagano G, Hess PW, Kyprianidis A, Becker P, Kaplan H, Gorshkov AV, Gong ZX, Monroe C. Nature. 2017;551:601. https://doi.org/10.1038/nature24654. 4. Barredo D, Lienhard V, de Léséleuc S, Lahaye T, Browaeys A. Nature. 2018;561:79. https://doi.org/10.1038/s41586-018-0450-2. 5. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan MP, Hartmann MJ, Ho A, Hoffmann M, Huang T, Humble TS, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov PV, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean JR, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E, Petukhov A, Platt JC, Quintana C, Rieffel EG, Roushan P, Rubin NC, Sank D, Satzinger KJ, Smelyanskiy V, Sung KJ, Trevithick MD, Vainsencher A, Villalonga B, White T, Yao ZJ, Yeh P, Zalcman A, Neven H, Martinis JM. Nature. 2019;574:505. https://doi.org/10.1038/s41586-019-1666-5.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|