Author:
Khalil Mostafa,Chan Adrian,Plant David V.,Chen Lawrence R.,Kuang Randy
Abstract
AbstractWe provide experimental validation of quantum encryption in phase space using displacement operators in coherent states (DOCS) in a conventional coherent optical communication system. The proposed encryption technique is based on displacing the information symbols in the phase space using random phases and amplitudes to achieve encryption randomly and provide security at the physical layer. We also introduce a dual polarization encryption approach where we use two different and random DOCS to encrypt the X and Y polarizations separately. The experimental results show that only authorized users can decrypt the signal correctly, and any mismatch in the displacement operator coefficients, amplitudes, or phases will lead to a bit error ratio (BER) of approximately 50%. We also compare the performance of the system with and without encryption over 80 km of standard-single mode fiber (SSMF) transmission to assess the added penalty of such encryption. The achieved net bit rates are 224, 448, and 560 Gb/s for QPSK, 16QAM, and 32QAM modulation formats, respectively. The experimental results showcase the efficacy of the DOCS encryption technique in resisting various decryption attempts, demonstrating its effectiveness in ensuring the security and confidentiality of transmitted data in a real-world transmission scenario.
Funder
Natural Sciences and Engineering Research Council (Canada) and the MITACS Accelerate program
Publisher
Springer Science and Business Media LLC