Author:
Kessler Mathieu,Alonso Diego,Sánchez Pedro
Abstract
AbstractThis paper focuses on Grover’s quantum search algorithm, which is of paramount importance as a masterpiece of Quantum Computing software. Given the inherent probabilistic nature of quantum computers, quantum programs based on Grover’s algorithm need to be run a number of times in order to generate a histogram of candidate values for solutions, which are then checked to identify the valid ones. In this paper, the distribution of the required number of shots to find all or a fraction of all the solutions to the Grover’s search problem is studied. Firstly, considering the similarity of the probability problem with the well-known coupon collector’s problem, two formulae are obtained from asymptotic results on the distribution of the required number of shots, as the number of problem solutions grows. These expressions allow to compute the number of shots required to ensure that, with probability p, all or a fraction of all the solutions are found. Secondly, the probability mass function of the required number of shots is derived, which serves as a benchmark to assess the validity of the asymptotic approximations derived previously. A comparison between the two approaches is presented and, as a result, a rule of thumb to decide under which circumstances employ one or the other is proposed.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献