Optimising the quantum/classical interface for efficiency and portability with a multi-level hardware abstraction layer for quantum computers

Author:

Barnes Kenton M.,Buyskikh Anton,Chen Nicholas Y.,Gallardo Gabriel,Ghibaudi Marco,Ruszala Matthew J. A.,Underwood Daniel S.,Agarwal Abhishek,Lall Deep,Rungger Ivan,Schoinas Nikolaos

Abstract

AbstractSteady progress is being made in the development of quantum computing platforms based on different types of qubit technologies. Each platform requires bespoke strategies to maximise the efficiency of the quantum/classical interface when operating close to the qubits. At a higher level, however, a shared interface allowing portability of quantum algorithms across all the available quantum platforms is preferred. Striking the right balance between portability and performance of the algorithm as implemented on quantum hardware remains a major challenge for this field. Here, we propose a quantum hardware abstraction layer (QHAL) providing a multi-level intermediate representation of the quantum stack. A collaborative effort between software specialists and quantum hardware developers operating on four major qubit technologies (photonics, silicon, superconducting and trapped ions) led to the identification of a minimum common set of instructions and metadata allowing the QHAL to interact efficiently with multiple platforms. Access to the stack from the higher levels increases latency yet minimises the amount of hardware architecture parameters to be handled by the algorithm developer, thus simplifying code development and reducing security threats from misuse or malicious access for hardware developers. Access to the stack from the lowest—closest to the qubits—level provides the highest hardware responsiveness, suitable for algorithms requiring minimum latency for data and instruction transfer. With respect to existing quantum assembly languages, the QHAL extends further down in the stack by defining an application-binary interface to interact with the quantum hardware. By defining a standard representation of the quantum stack, a common reference framework is provided to both software and hardware developers which would ensure future integration of their R&D efforts.

Funder

Innovate UK

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3