Author:
Barnes Kenton M.,Buyskikh Anton,Chen Nicholas Y.,Gallardo Gabriel,Ghibaudi Marco,Ruszala Matthew J. A.,Underwood Daniel S.,Agarwal Abhishek,Lall Deep,Rungger Ivan,Schoinas Nikolaos
Abstract
AbstractSteady progress is being made in the development of quantum computing platforms based on different types of qubit technologies. Each platform requires bespoke strategies to maximise the efficiency of the quantum/classical interface when operating close to the qubits. At a higher level, however, a shared interface allowing portability of quantum algorithms across all the available quantum platforms is preferred. Striking the right balance between portability and performance of the algorithm as implemented on quantum hardware remains a major challenge for this field. Here, we propose a quantum hardware abstraction layer (QHAL) providing a multi-level intermediate representation of the quantum stack. A collaborative effort between software specialists and quantum hardware developers operating on four major qubit technologies (photonics, silicon, superconducting and trapped ions) led to the identification of a minimum common set of instructions and metadata allowing the QHAL to interact efficiently with multiple platforms. Access to the stack from the higher levels increases latency yet minimises the amount of hardware architecture parameters to be handled by the algorithm developer, thus simplifying code development and reducing security threats from misuse or malicious access for hardware developers. Access to the stack from the lowest—closest to the qubits—level provides the highest hardware responsiveness, suitable for algorithms requiring minimum latency for data and instruction transfer. With respect to existing quantum assembly languages, the QHAL extends further down in the stack by defining an application-binary interface to interact with the quantum hardware. By defining a standard representation of the quantum stack, a common reference framework is provided to both software and hardware developers which would ensure future integration of their R&D efforts.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献