Author:
Dai Qunfeng,Quan Junyu,Lou Xiaoping,Li Qin
Abstract
AbstractBlind quantum computation (BQC) allows a client with limited quantum power to delegate his quantum computational task to a powerful server and still keep his input, output, and algorithm private. There are mainly two kinds of models about BQC, namely circuit-based and measurement-based models. In addition, a hybrid model called ancilla-driven universal blind quantum computation (ADBQC) was proposed by combining the properties of both circuit-based and measurement-based models, where all unitary operations on the register qubits can be realized with the aid of single ancilla coupled to the register qubits. However, in the ADBQC model, the quantum capability of the client is strictly limited to preparing single qubits. If a client can only perform single-qubit measurements or a few simple quantum gates, he will not be able to perform ADBQC. This paper solves the problem and extends the existing model by proposing two types of ADBQC protocols for clients with different quantum capabilities, such as performing single-qubit measurements or single-qubit gates. Furthermore, in the two proposed ADBQC protocols, clients can detect whether servers are honest or not with a high probability by using corresponding verifiable techniques.
Funder
National Natural Science Foundation of China
Science and Technology Innovation Program of Hunan Province
Natural Science Foundation of Hunan Province
Key Project of Hunan Province Education Department
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献