Accelerating quantum computer developments

Author:

Alberts Garrelt J. N.,Rol M. Adriaan,Last Thorsten,Broer Benno W.,Bultink Cornelis C.,Rijlaarsdam Matthijs S. C.,Van Hauwermeiren Amber E.

Abstract

Abstract Product development Given the recent breakthroughs in quantum technology development in R& D labs all over the world, the perspective of high-tech companies has changed. Product development is initiated next to the existing research and technology development activities. Quantum computer product roadmap Considering the quantum computer as a product requires standardization and integration of all its building blocks and a mature supply chain that can provide high-quality components and can ensure security of supply. The product development approach puts focus on functionality and performance requirements of the product and uses state-of-the-art technology to build the product. Based on the expected requirements of future products it is possible to outline a product development roadmap. It is expected that a fully functional quantum computer will be available within a decade from now, and will be used by the High Performance Computing (HPC) market, where it will replace (part of) the supercomputers that are currently used for complex calculations and data management. In the short term, a partly functional quantum computer will be available and of interest to the R&D market, which has a need for such a product to expedite their quantum technology developments. ImpaQT project In this paper, we present the product development approach and roadmap for quantum computers, based on superconducting circuits as an example. A group of companies in the Dutch quantum ecosystem (Quantum Delta) have joined forces and have started the ImpaQT project. The companies of the ImpaQT consortium form a local supply chain for key components of quantum computers. This paper shows that quantum community has reached the next level of maturity and that the quantum computer as a commercial product looks set to become a reality.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Control and Systems Engineering

Reference62 articles.

1. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan MP, Hartmann MJ, Ho A, Hoffmann M, Huang T, Humble TS, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov PV, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean JR, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E, Petukhov A, Platt JC, Quintana C, Rieffel EG, Roushan P, Rubin NC, Sank D, Satzinger KJ, Smelyanskiy V, Sung KJ, Trevithick MD, Vainsencher A, Villalonga B, White T, Yao ZJ, Yeh P, Zalcman A, Neven H, Martinis JM, editors. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574(7779):505–10. https://doi.org/10.1038/s41586-019-1666-5.

2. Zhong H-S, Wang H, Deng Y-H, Chen M-C, Peng L-C, Luo Y-H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X-Y, Zhang W-J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N-L, Lu C-Y, Pan J-W. Quantum computational advantage using photons. Science. 2020. https://doi.org/10.1126/science.abe8770. https://science.sciencemag.org/content/early/2020/12/02/science.abe8770.full.pdf.

3. IBMQ. IBM Quantum Experience. https://quantum-computing.ibm.com/. (2016).

4. Bruzewicz CD, Chiaverini J, McConnell R, Sage JM. Trapped-ion quantum computing: progress and challenges. Appl Phys Rev. 2019;6(2):021314. https://doi.org/10.1063/1.5088164.

5. Blume-Kohout R, Young KC. A volumetric framework for quantum computer benchmarks. arXiv:1904.05546. (2019).

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transforming future technology with quantum-based IoT;The Journal of Supercomputing;2024-06-23

2. Advancements in Quantum Computing—Viewpoint: Building Adoption and Competency in Industry;Datenbank-Spektrum;2024-03

3. Optimizing the Electrical Interface for Large-Scale Color-Center Quantum Processors;IEEE Transactions on Quantum Engineering;2024

4. FCMPR:A multi-path secure transmission method based on link security assessment and fountain coding;International Journal of Intelligent Networks;2024

5. SoK: A First Order Survey of Quantum Supply Dynamics and Threat Landscapes;Proceedings of the 12th International Workshop on Hardware and Architectural Support for Security and Privacy;2023-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3