Accelerating quantum computer developments
-
Published:2021-07-08
Issue:1
Volume:8
Page:
-
ISSN:2662-4400
-
Container-title:EPJ Quantum Technology
-
language:en
-
Short-container-title:EPJ Quantum Technol.
Author:
Alberts Garrelt J. N.,Rol M. Adriaan,Last Thorsten,Broer Benno W.,Bultink Cornelis C.,Rijlaarsdam Matthijs S. C.,Van Hauwermeiren Amber E.
Abstract
Abstract
Product development
Given the recent breakthroughs in quantum technology development in R& D labs all over the world, the perspective of high-tech companies has changed. Product development is initiated next to the existing research and technology development activities.
Quantum computer product roadmap
Considering the quantum computer as a product requires standardization and integration of all its building blocks and a mature supply chain that can provide high-quality components and can ensure security of supply. The product development approach puts focus on functionality and performance requirements of the product and uses state-of-the-art technology to build the product. Based on the expected requirements of future products it is possible to outline a product development roadmap.
It is expected that a fully functional quantum computer will be available within a decade from now, and will be used by the High Performance Computing (HPC) market, where it will replace (part of) the supercomputers that are currently used for complex calculations and data management. In the short term, a partly functional quantum computer will be available and of interest to the R&D market, which has a need for such a product to expedite their quantum technology developments.
ImpaQT project
In this paper, we present the product development approach and roadmap for quantum computers, based on superconducting circuits as an example. A group of companies in the Dutch quantum ecosystem (Quantum Delta) have joined forces and have started the ImpaQT project. The companies of the ImpaQT consortium form a local supply chain for key components of quantum computers.
This paper shows that quantum community has reached the next level of maturity and that the quantum computer as a commercial product looks set to become a reality.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Control and Systems Engineering
Reference62 articles.
1. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan MP, Hartmann MJ, Ho A, Hoffmann M, Huang T, Humble TS, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov PV, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean JR, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E, Petukhov A, Platt JC, Quintana C, Rieffel EG, Roushan P, Rubin NC, Sank D, Satzinger KJ, Smelyanskiy V, Sung KJ, Trevithick MD, Vainsencher A, Villalonga B, White T, Yao ZJ, Yeh P, Zalcman A, Neven H, Martinis JM, editors. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574(7779):505–10. https://doi.org/10.1038/s41586-019-1666-5. 2. Zhong H-S, Wang H, Deng Y-H, Chen M-C, Peng L-C, Luo Y-H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X-Y, Zhang W-J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N-L, Lu C-Y, Pan J-W. Quantum computational advantage using photons. Science. 2020. https://doi.org/10.1126/science.abe8770. https://science.sciencemag.org/content/early/2020/12/02/science.abe8770.full.pdf. 3. IBMQ. IBM Quantum Experience. https://quantum-computing.ibm.com/. (2016). 4. Bruzewicz CD, Chiaverini J, McConnell R, Sage JM. Trapped-ion quantum computing: progress and challenges. Appl Phys Rev. 2019;6(2):021314. https://doi.org/10.1063/1.5088164. 5. Blume-Kohout R, Young KC. A volumetric framework for quantum computer benchmarks. arXiv:1904.05546. (2019).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|