Abstract
AbstractSurface wave resonance of a liquid (water) layer confined in a circular channel is studied both experimentally and numerically. For the experiment, eight unevenly distributed ultrasonic distance sensors measure the local height of the wave surface. The resonance curves show maxima only for odd multiples of the fundamental resonance frequency $$f_0$$
f
0
. We explained this behavior using a simple intuitive “ping-pong” like model. Collision of wave fronts can be observed for higher frequencies. Also, the wave reflection on the walls can be treated as wave collision with itself. The non-linearity seems to be weak in our study so the delay in the wave propagation before and after the collision is small. Time-space plots show localized propagating waves with high amplitudes for frequencies near resonance. Between the peaks low amplitude and harmonic patterns are observed. However, for higher frequencies, the frequency band for localized waves becomes wider. In the Fourier space-time plane, this can be observed as a point for the harmonic patterns or a superposition of two lines: one line parallel to wave-vector k axis corresponding to the excitation frequency $$f_0$$
f
0
and a second line with inclination given by wave propagation velocity $$\sqrt{gh}$$
gh
. For planned future work, this result will help us to reconstruct the whole water surface elevation using time-series from only a few measurement points
Funder
Deutsche Forschungsgemeinschaft
Brandenburgische TU Cottbus-Senftenberg
Publisher
Springer Science and Business Media LLC
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献