The dynamic analysis of discrete fractional-order two-gene map

Author:

Subramani Rajeshkanna,Natiq Hayder,Rajagopal Karthikeyan,Krejcar Ondrej,Namazi HamidrezaORCID

Abstract

AbstractThe evolutionary processes are based on information transmission by nervous systems and inheritance by genes in DNA. Various continuous and discrete mathematical models have been presented for genes. Discrete gene models are particularly interesting due to their simple analysis and low computational costs. It is imperative to create genetic factors based on gene models that depend on the past. This paper proposes a discrete fractional-order two-gene map model. At first, the gene map is evaluated using the phase plane, bifurcation diagram, and Lyapunov exponent, and the periodic and chaotic behaviors of the system are shown. Then, the fractional-order gene map model is introduced. The system’s dynamic behaviors are investigated using bifurcation diagrams according to system parameters and derivative order. It is shown that increasing the value of the fractional order increases complexity, leading to chaotic behavior in the model. While decreasing the fractional derivative order mostly changes the dynamics to periodic. Finally, the synchronization of two two-gene maps with discrete fractional order is investigated using the electrical connection. The results show that in contrast to the integer-order model, the fractional-order model can reach synchronization.

Funder

Monash University

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Materials Science

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advancement of fractional calculus and its applications in physical systems;The European Physical Journal Special Topics;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3