Experimental evaluation of heat transfer effect on turbocompressor performance operating with helium-neon gas mixtures

Author:

Podeur Maxime,Vogt Damian M.

Abstract

AbstractWithin the framework of the Future Circular Collider (FCC) currently being investigated at CERN, the entire cryogenic cycle had to be revised with respect to the existing Large Hadron Collider (LHC). In particular, a novel pre-cooling cycle had to be developed for this purpose. This led to a closed-loop cryogenic cycle operating with a mixture of helium and neon, also called Nelium. To better understand the challenges and opportunities associated with the design and operation of radial compressors with such light gases, a closed loop test facility has been designed, built and commissioned at the ITSM (University of Stuttgart). The test facility has been developed to operate with air as well as with helium-neon gas mixtures of varying mixing ratios ranging from pure neon to pure helium. In this paper, the test facility architecture and operation procedure are briefly introduced together with a description of the newly installed compressor stage. Experimental performance measurements are then compared to adiabatic and diabatic numerical simulation validating respectively the pressure rise and diabatic stage efficiency for various gases. The heat transfer effect on compressor stage performance is then described and the respective contribution of the influencing factors are quantified.

Funder

H2020 Marie Skłodowska-Curie Actions

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3