Impedance modelling and collective effects in the Future Circular e+e− Collider with 4 IPs

Author:

Migliorati M.ORCID,Antuono C.,Carideo E.,Zhang Y.,Zobov M.

Abstract

AbstractThe FCC-ee impedance model is being constantly updated closely following the vacuum chamber design and parameters evolution. In particular, at present, a thicker NEG coating of 150 nm (instead of previous 100 nm) has been suggested by the vacuum experts, and a more realistic impedance model of the bellows has been investigated. Moreover, also the transverse impedance has been updated by considering the same sources as for the longitudinal case. Therefore, the FCC-ee impedance database is getting more complete and the impedance model is being refined. In this paper we describe the presently available machine coupling impedance in both longitudinal and transverse planes, and study the impedance-driven single bunch instabilities (with and without beam-beam interaction) for the new FCC-ee parameter set with 4 interaction points (IPs). The results are compared with the previously obtained ones and a further possible mitigation of the beam-beam head-tail instability (X-Z instability) is proposed.

Funder

H2020 Research Infrastructures

INFN

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strong–strong beam–beam simulations with lattices of circular e+e- colliders;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-07

2. Transverse mode-coupling instability with longitudinal impedance;Nuclear Science and Techniques;2024-06

3. Wakefields excited in the FCC-ee collimation system;Journal of Instrumentation;2024-02-01

4. Study of beam-beam interaction in FCC-ee including updated transverse and longitudinal Impedances;Journal of Physics: Conference Series;2024-01-01

5. Studies of FCC-ee Single Bunch Instabilities with an Updated Impedance Model;Journal of Physics: Conference Series;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3