The expressivity of classical and quantum neural networks on entanglement entropy

Author:

Wu Chih-Hung,Yen Ching-Che

Abstract

AbstractAnalytically continuing the von Neumann entropy from Rényi entropies is a challenging task in quantum field theory. While the n-th Rényi entropy can be computed using the replica method in the path integral representation of quantum field theory, the analytic continuation can only be achieved for some simple systems on a case-by-case basis. In this work, we propose a general framework to tackle this problem using classical and quantum neural networks with supervised learning. We begin by studying several examples with known von Neumann entropy, where the input data is generated by representing $${\text {Tr}}\rho _A^n$$ Tr ρ A n with a generating function. We adopt KerasTuner to determine the optimal network architecture and hyperparameters with limited data. In addition, we frame a similar problem in terms of quantum machine learning models, where the expressivity of the quantum models for the entanglement entropy as a partial Fourier series is established. Our proposed methods can accurately predict the von Neumann and Rényi entropies numerically, highlighting the potential of deep learning techniques for solving problems in quantum information theory.

Publisher

Springer Science and Business Media LLC

Reference87 articles.

1. T. Faulkner, T. Hartman, M. Headrick, M. Rangamani, B. Swingle, in 2022 Snowmass Summer Study (2022)

2. R. Bousso, X. Dong, N. Engelhardt, T. Faulkner, T. Hartman, S.H. Shenker, D. Stanford, Snowmass White Paper: Quantum Aspects of Black Holes and the Emergence of Spacetime (2022). arXiv:2201.03096 [hep-th]

3. A. Rényi, In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics (University of California Press, 1961), pp. 547–561. http://projecteuclid.org/euclid.bsmsp/1200512181

4. P. Calabrese, J.L. Cardy, Entanglement entropy and quantum field theory. J. Stat. Mech. 0406, P06002 (2004). https://doi.org/10.1088/1742-5468/2004/06/P06002. arXiv:hep-th/0405152

5. P. Calabrese, J. Cardy, E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory. J. Stat. Mech. 0911, P11001 (2009). https://doi.org/10.1088/1742-5468/2009/11/P11001. arXiv:0905.2069 [hep-th]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3