A possible critical heating from decay reaction and new upper limit of the magnetic monopole flux for the supermassive white dwarfs

Author:

Liu Jing-Jing,Liu Dong-Mei

Abstract

AbstractWe present the new upper limit of the magnetic monopole (MM) flux and discuss three MM models of the heating resource for supermassive white dwarfs (WDs) by considering the effect of temperature on thermonuclear reaction and mass radius relation of WDs based on the catalytic nuclear decay by MM. We discuss the luminosity and compared it with the observations to apply to 25 supermassive WDs. We find the maxnium of the number of MM captured can be $$9.6943\times 10^{11}$$ 9.6943 × 10 11 , and $$9.0671\times 10^{11}$$ 9.0671 × 10 11 for O+Ne core high mass WDs (e.g., WD J055631.17+130639.78), and C+O core high mass WDs (e.g., WD J055631.17+130639.78), respectively. The luminosities increase with the increasing of the temperature and are agreed well with the observations for model (III). The differences are no more than one, and three orders of magnitude higher than observations for model (III), and (I, II), respectively. Finaly, we find that the maxnium of the upper limits of the MM flux $$\phi _{m}$$ ϕ m due to RC effect can be $$9.1071\times 10^{-15}$$ 9.1071 × 10 - 15 , and $$2.7670\times 10^{-14}$$ 2.7670 × 10 - 14 for O+Ne and C+O core high mass WDs, respectively. Our results are about one and two orders of magnitude higher than those of Abbasi et al. (EPJC 69:361, 2010) (Albert et al. in JHEP 07:054, 2017) for O+Ne, and C+O core mass WDs, respectively, and can be about three and four orders of magnitude higher than those of Aartsen et al. (EPJC 76:133, 2016) (Ic40, Ic86), respectively. Our results show that the monopole-catalyzed nucleon decay could prevent WDs from cooling down into a stellar graveyard by keeping them hot.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3