The LHC as a Neutrino-Ion Collider

Author:

Cruz-Martinez Juan M.,Fieg Max,Giani Tommaso,Krack Peter,Mäkelä Toni,Rabemananjara Tanjona R.,Rojo Juan

Abstract

AbstractProton-proton collisions at the LHC generate a high-intensity collimated beam of neutrinos in the forward (beam) direction, characterised by energies of up to several TeV. The recent observation of LHC neutrinos by FASER$$\nu $$ ν and SND@LHC signifies that this previously overlooked particle beam is now available for scientific investigation. Here we quantify the impact that neutrino deep-inelastic scattering (DIS) measurements at the LHC would have on the parton distributions (PDFs) of protons and heavy nuclei. We generate projections for DIS structure functions for FASER$$\nu $$ ν and SND@LHC at Run III, as well as for the FASER$$\nu $$ ν 2, AdvSND, and FLArE experiments to be hosted at the proposed Forward Physics Facility (FPF) operating concurrently with the High-Luminosity LHC (HL-LHC). We determine that up to one million electron-neutrino and muon-neutrino DIS interactions within detector acceptance can be expected by the end of the HL-LHC, covering a kinematic region in x and $$Q^2$$ Q 2 overlapping with that of the Electron-Ion Collider. Including these DIS projections in global (n)PDF analyses, specifically PDF4LHC21, NNPDF4.0, and EPPS21, reveals a significant reduction in PDF uncertainties, in particular for strangeness and the up and down valence PDFs. We show that LHC neutrino data enable improved theoretical predictions for core processes at the HL-LHC, such as Higgs and weak gauge boson production. Our analysis demonstrates that exploiting the LHC neutrino beam effectively provides CERN with a “Neutrino-Ion Collider” without requiring modifications in its accelerator infrastructure.

Funder

NWO - Dutch Research Council

National Science Center Poland

Netherlands eScience Center

NSF

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3