Creation of bound half-fermion pairs by solitons

Author:

Karki Sapan,Altschul BrettORCID

Abstract

AbstractIn the presence of topologically nontrivial bosonic field configurations, the fermion number operator may take on fractional eigenvalues, because of the existence of zero-energy fermion modes. The simplest examples of this occur in $$1+1$$ 1 + 1 dimensions, with zero modes attached to kink-type solitons. In the presence of a kink-antikink pair, the two associated zero modes bifurcate into positive and negative energy levels with energies $$\pm ge^{-g\Delta }$$ ± g e - g Δ , in terms of the Yukawa coupling $$g\ll 1$$ g 1 and the distance $$\Delta $$ Δ between the kink and antikink centers. When the kink and antikink are moving, it seems that there could be Landau–Zener-like transitions between these two fermionic modes, which would be interpretable as the creation or annihilation of fermion-antifermion pairs; however, with only two solitons in relative motion, this does not occur. If a third solitary wave is introduced farther away to perturb the kink-antikink system, a movement of the faraway kink can induce transitions between the discrete fermion modes bound to the solitons. These state changes can be interpreted globally as creation or destruction of a novel type of pair: a half-fermion and a half-antifermion. The production of the half-integral pairs will dominate over other particle production channels as long as the solitary waves remain well separated, so that there is a manifold of discrete fermion states whose energies are either zero or exponentially close to zero.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3