Abstract
AbstractWe present a method for the numerical computation of Fourier–Bessel transforms on a finite or infinite interval. The function to be transformed needs to be evaluated on a grid of points that is independent of the argument of the Bessel function. We demonstrate the accuracy of the algorithm for a wide range of functions, including those that appear in the context of transverse-momentum dependent parton distributions in Quantum Chromodynamics.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. R. Boussarie et al., TMD Handbook. arXiv:2304.03302
2. M.A. Ebert, J.K.L. Michel, I.W. Stewart, Z. Sun, Disentangling long and short distances in momentum-space TMDs. JHEP 07, 129 (2022). https://doi.org/10.1007/JHEP07(2022)129. arXiv:2201.07237
3. M.G.A. Buffing, M. Diehl, T. Kasemets, Transverse momentum in double parton scattering: factorisation, evolution and matching. JHEP 01, 044 (2018). https://doi.org/10.1007/JHEP01(2018)044. arXiv:1708.03528
4. P. Cal, R. von Kuk, M.A. Lim, F.J. Tackmann, The $$q_T$$ spectrum for Higgs production via heavy quark annihilation at N3LL’ + aN3LO. arXiv:2306.16458
5. H. Ogata, A numerical integration formula based on the Bessel functions. Publ. Res. Inst. Math. Sci. 41, 949–970 (2005). https://doi.org/10.2977/PRIMS/1145474602