Machine-learning-based particle identification with missing data

Author:

Kasak Miłosz,Deja Kamil,Karwowska Maja,Jakubowska Monika,Graczykowski Łukasz,Janik Małgorzata

Abstract

AbstractIn this work, we introduce a novel method for Particle Identification (PID) within the scope of the ALICE experiment at the Large Hadron Collider at CERN. Identifying products of ultrarelativisitc collisions delivered by the LHC is one of the crucial objectives of ALICE. Typically employed PID methods rely on hand-crafted selections, which compare experimental data to theoretical simulations. To improve the performance of the baseline methods, novel approaches use machine learning models that learn the proper assignment in a classification task. However, because of the various detection techniques used by different subdetectors, as well as the limited detector efficiency and acceptance, produced particles do not always yield signals in all of the ALICE components. This results in data with missing values. Out of the box machine learning solutions cannot be trained with such examples without either modifying the training dataset or re-designing the model architecture. In this work, we propose the new method for PID that addresses these issues and can be trained with all of the available data examples, including incomplete ones. Our approach improves the PID purity and efficiency of the selected sample for all investigated particle species.

Funder

Politechnika Warszawska

Narodowe Centrum Nauki

Ministerstwo Edukacji i Nauki

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. K. Aamodt et al., The ALICE experiment at the CERN LHC. J. Instrum. 3, 08002 (2008). https://doi.org/10.1088/1748-0221/3/08/S08002

2. L. Evans, P. Bryant, LHC machine. J. Instrum. 3, 08001 (2008). https://doi.org/10.1088/1748-0221/3/08/S08001

3. S. Acharya et al., The ALICE experiment—a journey through QCD. (2022). arXiv:2211.04384 [nucl-ex]

4. E. Botta, Particle identification performance at ALICE, in Proceeding of the Fifth Annual Conference on Large Hadron Collider Physics (2017). arXiv:1709.00288 [nucl-ex]

5. G. Dellacasa et al., ALICE time projection chamber: technical design report. Technical design report. ALICE. CERN, Geneva (2000). https://cds.cern.ch/record/451098. Accessed 12 Dec 2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3