No scalar-haired Cauchy horizon theorem in charged Gauss–Bonnet black holes

Author:

Devecioğlu Deniz O.,Park Mu-In

Abstract

AbstractRecently, a “no inner (Cauchy) horizon theorem” for static black holes with non-trivial scalar hairs has been proved in Einstein–Maxwell–scalar theories and also in Einstein–Maxwell–Horndeski theories with the non-minimal coupling of a charged (complex) scalar field to Einstein tensor. In this paper, we study an extension of the theorem to the static black holes in Einstein–Maxwell–Gauss–Bonnet-scalar theories, or simply, charged Gauss–Bonnet (GB) black holes. We find that no inner horizon with charged scalar hairs is allowed for the planar ($$k=0$$ k = 0 ) black holes, as in the case without GB term. On the other hand, for the non-planar ($$k=\pm 1$$ k = ± 1 ) black holes, we find that the haired inner horizon can not be excluded due to GB effect generally, though we can not find a simple condition for its existence. As some explicit examples of the theorem, we study numerical GB black hole solutions with charged scalar hairs and Cauchy horizons in asymptotically anti-de Sitter space, and find good agreements with the theorem. Additionally, in an Appendix, we prove a “no-go theorem” for charged de Sitter black holes (with or without GB terms) with charged scalar hairs in arbitrary dimensions.

Funder

Ministry of Education

Publisher

Springer Science and Business Media LLC

Reference19 articles.

1. S.A. Hartnoll, G.T. Horowitz, J. Kruthoff, J.E. Santos. arXiv:2006.10056 [hep-th]

2. S.A. Hartnoll, G.T. Horowitz, J. Kruthoff, J.E. Santos. arXiv:2008.12786 [hep-th]

3. O.J.C. Dias, G.T. Horowitz, J.E. Santos. arXiv:2110.06225 [hep-th]

4. R.G. Cai, L. Li, R.Q. Yang, JHEP 03, 263 (2021). arXiv:2009.05520 [gr-qc]

5. D.O. Devecioglu, M.I. Park, Phys. Lett. B 829, 137107 (2022). arXiv:2101.10116 [hep-th]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Page curves in holographic superconductors;Physical Review D;2024-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3