Bouncing and collapsing universes dual to late-time cosmological models

Author:

Mukherjee DipayanORCID,Jassal H. K.,Lochan Kinjalk

Abstract

AbstractWe use the Jordan frame–Einstein frame correspondence to explore dual universes with contrasting cosmological evolutions. We study the mapping between Einstein and Jordan frames where the Einstein frame universe describes the late-time evolution of the physical universe, which is driven by dark energy and non-relativistic matter. The Brans–Dicke theory of gravity is considered to be the dual scalar–tensor theory in the Jordan frame. We show that an Einstein frame universe, with cosmological evolution of the $$\Lambda $$ Λ CDM model, always corresponds to a bouncing Jordan frame universe governed by a Brans–Dicke theory. On the other hand, quintessence models of dark energy with non-relativistic matter component are shown to be always dual to a Brans–Dicke Jordan frame with a turn-around, i.e., a bounce or a collapse. The evolution of the equation of state of the quintessence field determines whether the turn-around is a bounce or a collapse. The point of the Jordan frame turn-around for all the cases can be tuned anywhere by choosing an appropriate Brans–Dicke parameter. This essentially leads to alternative descriptions of the late-time evolution of the physical universe, in terms of bouncing or collapsing Brans–Dicke universes in the Jordan frame. Therefore, the effect of dark energy can equivalently be seen as collapse of space in a conformally connected universe. We further study the stability of such conformal maps against linear perturbations. The effective bouncing and collapsing descriptions of the current accelerating universe may have interesting implications for the evolutions of perturbations and quantum fluctuations in the cosmological background.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3