Stimulated decay of collapsing axion stars and fast radio bursts

Author:

Di Haoran

Abstract

AbstractThe radiation mechanism of fast radio bursts (FRBs) has been extensively studied but still remains elusive. In the search for dark matter candidates, the QCD axion and axionlike particles (ALPs) have emerged as prominent possibilities. These elusive particles can aggregate into dense structures called axion stars through Bose–Einstein condensation (BEC). Such axion stars could constitute a significant portion of the mysterious dark matter in the universe. When these axion stars grow beyond a critical mass, usually through processes like accretion or merging, they undergo a self-driven collapse. Traditionally, for spherically symmetric axion clumps, the interaction between axions and photons does not lead to parametric resonance, especially when the QCD axion-photon coupling is at standard levels. Nevertheless, our study indicates that even QCD axion stars with typical coupling values can trigger stimulated decay during their collapse, rather than producing relativistic axions through self-interactions. This process results in short radio bursts, with durations of around 0.1 s, and can be potentially observed using radio telescopes like FAST or SKA. Furthermore, we find that collapsing axion stars for ALPs with specific parameters may emit radio bursts lasting just milliseconds with a peak luminosity of $$1.60\times 10^{42}\,\mathrm{erg/s}$$ 1.60 × 10 42 erg / s , matching the characteristics of the observed non-repeating FRBs.

Funder

East China University of Technology Research Foundation for Advanced Talents

Special Foundation for Theoretical Physics Research Program of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3