On the conformal limit of a QED-inspired model

Author:

Oliveira O.,Frederico T.,de Paula W.ORCID

Abstract

AbstractA conformal invariant QED-inspired model is solved for a general covariant linear gauge using the Dyson–Schwinger equations for the propagators assuming a pure vector like interaction. The leading corrections to the asymptotic solutions and the exponents, that characterize the corrections to each of the two fermion propagator functions, are computed as a function of the coupling and gauge fixing parameter $$\xi $$ ξ . For the scalar component of the fermion propagator our findings generalizes for linear covariant gauges previous results found in the literature and reproduce the outcome of the perturbative analysis of quenched QED in the Landau gauge. Our solution for the exponent associated with vector component of the fermion propagator is new and, in the weak coupling regime, agrees with the estimation based on the perturbative analysis of quenched QED. Of the two critical exponents describing the conformal limit of the vector interaction, one of them is, in QED, associated with the regime where chiral symmetry is broken dynamically, which demands one mass scale, namely the Miransky scaling. A second mass scale has to be introduced at larger coupling constants and is associated with a change on the nature of the fermion wave function. This provides one example, that it is possible to find two interwoven cycles in Quantum Field Theory, albeit in a truncated framework, as it is known in the quantum few-body problem in the limit of a zero-range interaction.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação para a Ciência e a Tecnologia

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3