Dark energy and dark matter configurations for wormholes and solitionic hierarchies of nonmetric Ricci flows and $$F(R,T,Q,T_{m})$$ gravity

Author:

Bubuianu Laurenţiu,Vacaru Sergiu I.,Veliev Elşen Veli,Zhamysheva Assel

Abstract

AbstractWe extend the anholonomic frame and connection deformation method, AFCDM, for constructing exact and parametric solutions in general relativity, GR, to geometric flow models and modified gravity theories, MGTs, with nontrivial torsion and nonmetricity fields. Following abstract geometric or variational methods, we can derive corresponding systems of nonmetric gravitational and matter field equations which consist of very sophisticate systems of coupled nonlinear PDEs. Using nonholonomic frames with dyadic spacetime splitting and applying the AFCDM, we prove that such systems of PDEs can be decoupled and integrated in general forms for generic off-diagonal metric structures and generalized affine connections. We generate new classes of quasi-stationary solutions (which do not depend on time like coordinates) and study the physical properties of some physically important examples. Such exact or parametric solutions are determined by nonmetric solitonic distributions and/or ellipsoidal deformations of wormhole hole configurations. It is not possible to describe the thermodynamic properties of such solutions in the framework of the Bekenstein–Hawking paradigm because such metrics do not involve, in general, certain horizons, duality, or holographic configurations. Nevertheless, we can always elaborate on associated Grigori Perelman thermodynamic models elaborated for nonmetric geometric flows. In explicit form, applying the AFCDM, we construct and study the physical implications of new classes of traversable wormhole solutions describing solitonic deformation and dissipation of non-Riemannian geometric objects. Such models with nontrivial gravitational off-diagonal vacuum are important for elaborating models of dark energy and dark matter involving wormhole configurations and solitonic-type structure formation.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3