Scalar fields, localized structures and the Starobinsky model

Author:

Bazeia D.,Lima Elisama E. M.

Abstract

AbstractThis work deals with the presence of localized static structures in the real line, described by relativistic real scalar fields in two spacetime dimensions. We consider models featuring both standard and modified kinematics, where we employ two intriguing potentials supporting defect solutions. The first potential can transform kink into compacton in the standard framework, while the second one is based on the inflationary Starobinsky model. Interesting possibilities unseen in previous investigations are described, in particular, for the case related to the Starobinsky potential. The addressed potentials are inserted into a broader framework, and so the extended models are described by a wider set of solutions. This investigation also reveals the presence of the twinlike behaviour for a specific compact configuration, which solves two distinct models.

Funder

Fundação de Apoio à Pesquisa do Estado da Paraíba

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Reference45 articles.

1. R. Rajaraman, Solitons and Instantons (North-Holland, 1982)

2. A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Others Topological Defects (Cambridge University Press, Cambridge, 1994)

3. N. Manton, P. Sutcliffe, Topological Solitons (Cambridge University Press, Cambridge, 2004)

4. D. Walgraef, Spatio-Temporal Pattern Formation (Springer, New York, 1997)

5. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3