Generative models for simulation of KamLAND-Zen
-
Published:2024-06-27
Issue:6
Volume:84
Page:
-
ISSN:1434-6052
-
Container-title:The European Physical Journal C
-
language:en
-
Short-container-title:Eur. Phys. J. C
Author:
Fu Zhenghao, Grant Christopher, Krawiec Dominika M., Li AoboORCID, Winslow Lindley A.
Abstract
AbstractThe next generation of searches for neutrinoless double beta decay ($$0 \nu \beta \beta $$
0
ν
β
β
) are poised to answer deep questions on the nature of neutrinos and the source of the Universe’s matter–antimatter asymmetry. They will be looking for event rates of less than one event per ton of instrumented isotope per year. To claim discovery, accurate and efficient simulations of detector events that mimic $$0 \nu \beta \beta $$
0
ν
β
β
is critical. Traditional Monte Carlo (MC) simulations can be supplemented by machine-learning-based generative models. This work describes the performance of generative models that we designed for monolithic liquid scintillator detectors like KamLAND to produce accurate simulation data without a predefined physics model. We present their current ability to recover low-level features and perform interpolation. In the future, the results of these generative models can be used to improve event classification and background rejection by providing high-quality abundant generated data.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. A. Gando et al., Phys. Rev. Lett. 117(8), 082503 (2016). https://doi.org/10.1103/PhysRevLett.117.082503. [Addendum: Phys. Rev. Lett. 117, 109903 (2016)] 2. K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003). https://doi.org/10.1103/PhysRevLett.90.021802 3. M. Agostini et al., Nature 587, 577 (2020). https://doi.org/10.1038/s41586-020-2934-0 4. C. Arpesella, H.O. Back, M. Balata, G. Bellini, J. Benziger, S. Bonetti, A. Brigatti, B. Caccianiga, L. Cadonati, F. Calaprice, C. Carraro, G. Cecchet, A. Chavarria, M. Chen, F. Dalnoki-Veress, D. D’Angelo, A. de Bari, A. de Bellefon, H. de Kerret, A. Derbin, M. Deutsch, A. di Credico, G. di Pietro, R. Eisenstein, F. Elisei, A. Etenko, R. Fernholz, K. Fomenko, R. Ford, D. Franco, B. Freudiger, C. Galbiati, F. Gatti, S. Gazzana, M. Giammarchi, D. Giugni, M. Goeger-Neff, T. Goldbrunner, A. Goretti, C. Grieb, C. Hagner, W. Hampel, E. Harding, S. Hardy, F.X. Hartman, T. Hertrich, G. Heusser, A. Ianni, A. Ianni, M. Joyce, J. Kiko, T. Kirsten, V. Kobychev, G. Korga, G. Korschinek, D. Kryn, V. Lagomarsino, P. Lamarche, M. Laubenstein, C. Lendvai, M. Leung, T. Lewke, E. Litvinovich, B. Loer, P. Lombardi, L. Ludhova, I. Machulin, S. Malvezzi, S. Manecki, J. Maneira, W. Maneschg, I. Manno, D. Manuzio, G. Manuzio, A. Martemianov, F. Masetti, U. Mazzucato, K. McCarty, D. McKinsey, Q. Meindl, E. Meroni, L. Miramonti, M. Misiaszek, D. Montanari, M.E. Monzani, V. Muratova, P. Musico, H. Neder, A. Nelson, L. Niedermeier, L. Oberauer, M. Obolensky, M. Orsini, F. Ortica, M. Pallavicini, L. Papp, S. Parmeggiano, L. Perasso, A. Pocar, R.S. Raghavan, G. Ranucci, W. Rau, A. Razeto, E. Resconi, P. Risso, A. Romani, D. Rountree, A. Sabelnikov, R. Saldanha, C. Salvo, D. Schimizzi, S. Schönert, T. Shutt, H. Simgen, M. Skorokhvatov, O. Smirnov, A. Sonnenschein, A. Sotnikov, S. Sukhotin, Y. Suvorov, R. Tartaglia, G. Testera, D. Vignaud, S. Vitale, R.B. Vogelaar, F. von Feilitzsch, R. von Hentig, T. von Hentig, M. Wojcik, M. Wurm, O. Zaimidoroga, S. Zavatarelli, G. Zuzel, Phys. Rev. Lett. 101, 091302 (2008). https://doi.org/10.1103/PhysRevLett.101.091302 5. G. Bellini et al., Phys. Rev. Lett. 107, 141302 (2011). https://doi.org/10.1103/PhysRevLett.107.141302
|
|