Massive propagating modes of torsion

Author:

Denk VladimirORCID,Vasak David,Kirsch Johannes

Abstract

AbstractThe dynamics of the torsion field is analyzed in the framework of the Covariant Canonical Gauge Theory of Gravity (CCGG), a De Donder–Weyl Hamiltonian formulation of gauge gravity. The action is quadratic in both, the torsion and the Riemann–Cartan tensor. Since the latter adds the derivative of torsion to the equations of motion, torsion is no longer identical to spin density, as in the Einstein–Cartan theory, but an additional propagating degree of freedom. As torsion turns out to be totally anti-symmetric, it can be parametrised via a single axial vector. It is shown in this paper that, in the weak torsion limit, the axial vector obeys a wave equation with an effective mass term which is partially dependent on the scalar curvature. The source of torsion is thereby given by the fermion axial current which is the net fermionic spin density of the system. Possible measurable effects and approaches to experimental analysis are addressed. For example, neutron star mergers could act as a dipoles or quadrupoles for torsional radiation, and an analysis of radiation of pulsars could lead to a detection of torsion wave background radiation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3