Far-from-equilibrium attractors with full relativistic Boltzmann approach in boost-invariant and non-boost-invariant systems

Author:

Nugara Vincenzo,Plumari Salvatore,Oliva Lucia,Greco Vincenzo

Abstract

AbstractWe study the universal behavior associated with a Relativistic Boltzmann Transport (RBT) approach with the full collision integral in 0+1D conformal systems. We show that all momentum moments of the distribution function exhibit universal behavior. Furthermore, the RBT approach allows to calculate the full distribution function, showing that an attractor behavior is present in both the longitudinal and transverse momentum dependence. We compare our results to the far-from-equilibrium attractors determined with other approaches, such as kinetic theory in Relaxation Time Approximation (RTA) and relativistic hydrodynamic theories, both in their viscous (DNMR) an anisotropic (aHydro) formulations, finding a very similar evolution, but an even faster thermalization in RBT for higher order moments. For the first time, we extended this analysis also to study the attractor behavior under a temperature-dependent viscosity $$\eta /s(T)$$ η / s ( T ) , accounting also for the rapid increase toward the hadronic phase. We find that a partial breaking of the scaling behavior with respect to $$\tau /\tau _{eq}$$ τ / τ eq emerges only at $$T \approx T_c$$ T T c generating a transient deviation from attractors; interestingly this in realistic finite systems may occur around the freeze-out dynamics. Finally, we investigate for the first time results beyond the boost-invariant picture, finding that also in such a case the system evolves toward the universal attractor. In particular, we present the forward and pull-back attractors at different space-time rapidities including rapidity regions where initially the distribution function is even vanishing.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3