Supersymmetric domain walls in maximal 6D gauged supergravity III

Author:

Nuchino Patharadanai,Karndumri Parinya

Abstract

AbstractWe continue our study of gaugings the maximal $$N=(2,2)$$ N = ( 2 , 2 ) supergravity in six dimensions with gauge groups obtained from decomposing the embedding tensor under $${\mathbb {R}}^+\times SO(4,4)$$ R + × S O ( 4 , 4 ) subgroup of the global symmetry SO(5, 5). Supersymmetry requires the embedding tensor to transform in $${\textbf{144}}_c$$ 144 c representation of SO(5, 5). Under $${\mathbb {R}}^+\times SO(4,4)$$ R + × S O ( 4 , 4 ) subgroup, this leads to the embedding tensor in $$({\textbf{8}}^{\pm 3},$$ ( 8 ± 3 , $${\textbf{8}}^{\pm 1},{\textbf{56}}^{\pm 1})$$ 8 ± 1 , 56 ± 1 ) representations. Gaugings in $${\textbf{8}}^{\pm 3}$$ 8 ± 3 representations lead to a translational gauge group $${\mathbb {R}}^8$$ R 8 while gaugings in $${\textbf{8}}^{\pm 1}$$ 8 ± 1 representations give rise to gauge groups related to the scaling symmetry $${\mathbb {R}}^+.$$ R + . On the other hand, the embedding tensor in $${\textbf{56}}^{\pm 1}$$ 56 ± 1 representations gives $$CSO(4-p,p,1)\sim SO(4-p,p) < imes {\mathbb {R}}^4\subset SO(4,4)$$ C S O ( 4 - p , p , 1 ) S O ( 4 - p , p ) R 4 S O ( 4 , 4 ) gauge groups with $$p=0,1,2.$$ p = 0 , 1 , 2 . More interesting gauge groups can be obtained by turning on more than one representation of the embedding tensor subject to the quadratic constraints. In particular, we consider gaugings in both $${\textbf{56}}^{-1}$$ 56 - 1 and $${\textbf{8}}^{+3}$$ 8 + 3 representations giving rise to larger $$SO(5-p,p)$$ S O ( 5 - p , p ) and $$SO(4-p,p+1)$$ S O ( 4 - p , p + 1 ) gauge groups for $$p=0,1,2.$$ p = 0 , 1 , 2 . In this case, we also give a number of half-supersymmetric domain wall solutions preserving different residual symmetries. The solutions for gaugings obtained only from $${\textbf{56}}^{-1}$$ 56 - 1 representation are also included in these results when the $${\textbf{8}}^{+3}$$ 8 + 3 part is accordingly turned off.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3