Simple representations of BPS algebras: the case of $$Y(\widehat{\mathfrak {gl}}_2)$$

Author:

Galakhov Dmitry,Morozov Alexei,Tselousov NikitaORCID

Abstract

AbstractBPS algebras are the symmetries of a wide class of brane-inspired models. They are closely related to Yangians – the peculiar and somewhat sophisticated limit of DIM algebras. Still they possess some simple and explicit representations. We explain here that for $$Y(\widehat{\mathfrak {gl}}_r)$$ Y ( gl ^ r ) these representations are related to Uglov polynomials, whose families are also labeled by natural r. They arise in the limit $$\hbar {\longrightarrow } 0$$ ħ 0 from Macdonald polynomials, and generalize the well-known Jack polynomials ($$\beta $$ β -deformation of Schur functions), associated with $$r=1.$$ r = 1 . For $$r=2$$ r = 2 they approximate Macdonald polynomials with the accuracy $$O(\hbar ^2),$$ O ( ħ 2 ) , so that they are eigenfunctions of two immediately available commuting operators, arising from the $$\hbar $$ ħ -expansion of the first Macdonald Hamiltonian. These operators have a clear structure, which is easily generalizable, – what provides a technically simple way to build an explicit representation of Yangian $$Y(\widehat{\mathfrak {gl}}_2),$$ Y ( gl ^ 2 ) , where $$U^{(2)}$$ U ( 2 ) are associated with the states $$|\lambda {\rangle },$$ | λ , parametrized by chess-colored Young diagrams. An interesting feature of this representation is that the odd time-variables $$p_{2n+1}$$ p 2 n + 1 can be expressed through mutually commuting operators from Yangian, however even time-variables $$p_{2n}$$ p 2 n are inexpressible. Implications to higher r become now straightforward, yet we describe them only in a sketchy way.

Funder

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Macdonald polynomials for super-partitions;Physics Letters B;2024-09

2. Algorithms for representations of quiver Yangian algebras;Journal of High Energy Physics;2024-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3