How to discover QCD Instantons at the LHC

Author:

Amoroso SimoneORCID,Kar Deepak,Schott Matthias

Abstract

AbstractThe Standard Model of particle physics predicts the existence of quantum tunnelling processes across topological inequivalent vacua, commonly known as Instantons. In Quantum Chromodynamics, these Instantons play a fundamental role in explaining much of the theory long-distance behaviour. However, they have not yet been observed experimentally. Their direct observation would mark a breakthrough in modern particle physics, shedding light on our fundamental understanding of the non perturbative dynamics in the Standard Model. Recently, new calculations for QCD Instanton processes in proton–proton collisions became public, suggesting sizeable cross sections as well as possible experimental signatures at the LHC. In this work, we explore possible analysis strategies for the LHC experiments to discover small-size QCD Instanton induced processes. Moreover, we derive a first limit on the Instanton production cross section using published data of Minimum Bias processes at $$\sqrt{s}=$$ s = 13 TeV at the LHC.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measurements of multijet event isotropies using optimal transport with the ATLAS detector;Journal of High Energy Physics;2023-10-10

2. Instanton induced spin–spin correlations;The European Physical Journal C;2023-07-28

3. Searches for QCD instantons with forward proton tagging;The European Physical Journal C;2023-01-18

4. Central instanton production;Physical Review D;2022-02-17

5. Hunting for QCD instantons at the LHC in events with large rapidity gaps;Physical Review D;2021-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3