Abstract
AbstractExploring the significant impacts of topological charge on the holographic phase transitions and conductivity we start from an Einstein–Maxwell system coupled with a charged scalar field in Anti-de Sitter spacetime. In our set up, the corresponding black hole (BH) is chosen to be the topological AdS one where the pressure is identified with the cosmological constant (Kubiznak and Mann in JHEP 7:33, 2012), then the AdS BH undergoes the phase transition from small to large BHs, which is totally similar to the transition from gas to liquid in the van der Waals theory. Our numerical computation shows that the process of condensation is favored at finite topological charge, in particular, the phase transition from small to large BHs in the bulk generates a mechanism for changing the order of phase transition in the boundary: the second order phase transitions occur at pressures higher than the critical pressure of the phase transition from small to large BHs while they become first order at lower pressures. This property is confirmed with the aid of holographic free energy. Finally, the frequency dependent conductivity exhibits an energy gap when the phase transition is second order and when the phase transition becomes first order this gap is either reduced or totally lost.
Funder
Vietnam National Foundation for Science and Technology Development
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献