Author:
Gonzalez Ivan,Kondrashuk Igor,Moll Victor H.,Recabarren Luis M.
Abstract
AbstractThe method of brackets is a method for the evaluation of definite integrals based on a small number of rules. This is employed here for the evaluation of Mellin–Barnes integral. The fundamental idea is to transform these integral representations into a bracket series to obtain their values. The expansion of the gamma function in such a series constitute the main part of this new application. The power and flexibility of this procedure is illustrated with a variety of examples.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference29 articles.
1. M. Albano, E. Beyerstedt, V. Moll, The integrals in Gradshteyn and Ryzhik. Part 19: the error function. Scientia 21, 25–42 (2011)
2. P. Allendes, N. Guerrero, E. Kondrashuk, E.A. Notte Cuello, New four-dimensional integrals by Mellin–Barnes transform. J. Math. Phys. 51, 052304 (2010)
3. P. Allendes, B. Kniehl, E. Kondrashuk, E.A. Notte Cuello, M. Rojas Medar, Solution to Bethe–Salpeter equation via Mellin–Barnes transform. Nucl. Phys. B 870, 243 (2013)
4. G. Alvarez, G. Cvetic, B.A. Kniehl, I. Kondrashuk, I. Parra-Ferrada, Analytical solution to DGLAP integro-differential equation in a simple toy-model with a fixed gauge coupling. https://doi.org/10.3204/PUBDB-2016-06335. arXiv:1611.08787 [hep-ph]
5. T. Amdeberhan, O. Espinosa, I. Gonzalez, M. Harrison, V. Moll, A. Straub, Ramanujan master theorem. Ramanujan J. 29, 103–120 (2012)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献