Abstract
AbstractThe confinement/deconfinement transition described the Polyakov–Nambu–Jona–Lasinio (PNJL) model is extended to be operative at zero temperature regime. In this study, the scalar and vector channel interaction strengths of the original PNJL model are modified by introducing a dependence on the traced Polyakov loop. In such a way the effective interactions depend on the quark phase and in turn provides a backreaction of the quarks to the gluonic sector, also at zero temperature. On general grounds from quantum chromodynamics this is an expected feature. The thermodynamics of the extended model (PNJL0) is studied in detail. It presents along with a suitable choice of the Polyakov potential, a first order confined/deconfined quark phase transition even at $$T=0$$
T
=
0
. We also show that the vector channel plays an important role in order to allow $$\varPhi \ne 0$$
Φ
≠
0
solutions for the PNJL0 model. Furthermore, the sensitivity of the combined quarkyonic and deconfinement phases to the vector interaction strength and the proposed parametrization of the Polyakov-loop potential at $$T=0$$
T
=
0
allowed to set a window for the bulk values of the relevant parameters.
Funder
Instituto Nacional de Ciência e Tecnologia: Física Nuclear e Aplicações
Fundação de Amparo à Pesquisa do Estado de São Paulo
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献