Revisiting the cosmic distance duality relation with machine learning reconstruction methods: the combination of HII galaxies and ultra-compact radio quasars

Author:

Liu Tonghua,Cao Shuo,Zhang Sixuan,Gong Xiaolong,Guo Wuzheng,Zheng Chenfa

Abstract

AbstractIn this paper, we carry out an assessment of cosmic distance duality relation (CDDR) based on the latest observations of HII galaxies acting as standard candles and ultra-compact structure in radio quasars acting as standard rulers. Particularly, two machine learning reconstruction methods [Gaussian Process (GP) and Artificial Neural Network (ANN)] are applied to reconstruct the Hubble diagrams from observational data. We show that both approaches are capable of reconstructing the current constraints on possible deviations from the CDDR in the redshift range $$z\sim 2.3$$ z 2.3 . Considering four different parametric methods of CDDR, which quantify deviations from the CDDR and the standard cosmological model, we compare the results of the two different machine learning approaches. It is observed that the validity of CDDR is in well agreement with the current observational data within $$1\sigma $$ 1 σ based on the reconstructed distances through GP in the overlapping redshift domain. Moreover, we find that ultra-compact radio quasars could provide $$10^{-3}$$ 10 - 3 -level constraints on the violation parameter at high redshifts, when combined with the observations of HII galaxies. In the framework of ANN, one could derive robust constraints on the violation parameter at a precision of $$10^{-2}$$ 10 - 2 , with the validity of such distance duality relation within $$2\sigma $$ 2 σ confidence level.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference68 articles.

1. I.M.H. Etherington, Philos. Mag. 15, 761 (1933)

2. I.M.H. Etherington, Gen. Relativ. Gravit. 39, 1055 (2007)

3. N. Aghanim, Y. Akrami, M. Ashdown et al., A&A 641, A6 (2018)

4. S. Cao, Z.-H. Zhu, SCPMA 54, 12 (2011)

5. S. Cao, M. Biesiada, X. Zheng, Z.-H. Zhu, MNRAS 457, 281 (2016)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3