Abstract
AbstractThe Kinnersley spacetime not only describes a non-spherical symmetric, non-stationary and accelerating black hole, but also can be used to explore the characteristics of collision of two black holes because it has two horizons: the Rindler horizon and the event horizon. Previous research shows Rindler horizon and the event horizon cannot touch due to violation of the third law of thermodynamics. By solving a fermion dynamical equation including the Lorentz dispersion relation, we obtain a modified radiation temperature at the event horizon of the black hole, as well as the colliding temperature at the touch point of Rindler horizon and the event horizon. We find the temperature at the touch point is not equal to zero if $${\dot{r}}_H\ne 0$$
r
˙
H
≠
0
. This result indicates that the event horizon and Rindler horizon can collide without violation of the third law of thermodynamics when Lorentz dispersion relation is considered.
Funder
Natural Science Foundation of Shandong Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献