Abstract
AbstractIn phenomenology of quantum chromodynamics (QCD), charmed meson vertices are useful tools to study the final-state re-scattering effects in the hadronic B decays. The strong couplings of charm mesons vertices, are related to the basic parameters in the heavy quark effective Lagrangian. Here, the four-flavor Hard-Wall holographic QCD is illustrated to evaluate the couplings of $$(D^{_{-(*-)}}, {\bar{D}}^{_0}, a_{1}^{_-})$$
(
D
-
(
∗
-
)
,
D
¯
0
,
a
1
-
)
, $$(D^{_{-(*-)}}, {\bar{D}}^{_0}, b_{1}^{_-})$$
(
D
-
(
∗
-
)
,
D
¯
0
,
b
1
-
)
, $$(D_{s}^{_{-(*-)}},{\bar{D}}^{_{0}}, K_{1A}^{_-})$$
(
D
s
-
(
∗
-
)
,
D
¯
0
,
K
1
A
-
)
, $$(D_{s}^{_{-(*-)}}, {\bar{D}}^{_{0}}, K_{1B}^{_{-(*-)}})$$
(
D
s
-
(
∗
-
)
,
D
¯
0
,
K
1
B
-
(
∗
-
)
)
, $$(D_{s}^{_{+(*+)}}, {D}^{_+}, K_{1A}^{_0})$$
(
D
s
+
(
∗
+
)
,
D
+
,
K
1
A
0
)
, $$(D_{s}^{_{+(*+)}}, {D}^{_+}, K_{1B}^{_0})$$
(
D
s
+
(
∗
+
)
,
D
+
,
K
1
B
0
)
, $$(D^{_{-(*-)}}, {\bar{D}}^{_{0(*0)}}, \rho ^{_-})$$
(
D
-
(
∗
-
)
,
D
¯
0
(
∗
0
)
,
ρ
-
)
, $$(D_{s}^{_{-(*-)}}, {\bar{D}}^{_{0(*0)}}, K^{_{*-}})$$
(
D
s
-
(
∗
-
)
,
D
¯
0
(
∗
0
)
,
K
∗
-
)
, $$({D}^{_{0(*0)}}, {\bar{D}}^{_{0(*0)}}, \psi )$$
(
D
0
(
∗
0
)
,
D
¯
0
(
∗
0
)
,
ψ
)
, $$(D_{1}^{_-}, {\bar{D}}_{1}^{_0}, \pi ^{_-})$$
(
D
1
-
,
D
¯
1
0
,
π
-
)
, $$(D_{s1}^{_-}, {\bar{D}}_{1}^{_0}, K^{_{-}})$$
(
D
s
1
-
,
D
¯
1
0
,
K
-
)
, $$({D}_{1}^{_0}, {\bar{D}}_{1}^{_0}, \eta _{c})$$
(
D
1
0
,
D
¯
1
0
,
η
c
)
, $$(\psi , D^{_{0(*0)}}, D^{_{+}}, \pi ^{_-})$$
(
ψ
,
D
0
(
∗
0
)
,
D
+
,
π
-
)
, $$(\psi , D^{_{0(*0)}}, {\bar{D}}^{_0}, \pi ^{_0})$$
(
ψ
,
D
0
(
∗
0
)
,
D
¯
0
,
π
0
)
, $$(\psi , D_{s}^{_{+(*+)}}, D^{_{-}}, K^{_{0}})$$
(
ψ
,
D
s
+
(
∗
+
)
,
D
-
,
K
0
)
, $$(\psi , D^{_{0(*0)}}, D^{_{+}}, a_{1}^{_-})$$
(
ψ
,
D
0
(
∗
0
)
,
D
+
,
a
1
-
)
, $$(\psi , D^{_{0(*0)}}, D^{_{+}}, b_{1}^{_-})$$
(
ψ
,
D
0
(
∗
0
)
,
D
+
,
b
1
-
)
, $$(\psi , D_{s}^{_{+(*+)}}, D^{_{-}}, K_{1B}^{_{0}})$$
(
ψ
,
D
s
+
(
∗
+
)
,
D
-
,
K
1
B
0
)
and $$(\psi , D_{s}^{_{+(*+)}}, D^{_{-}}, K_{1B}^{_{0}})$$
(
ψ
,
D
s
+
(
∗
+
)
,
D
-
,
K
1
B
0
)
vertices. Moreover, the values of the masses of $$D^{_{0(*0)}}$$
D
0
(
∗
0
)
, $$D_{s}^{_{-(*-)}}$$
D
s
-
(
∗
-
)
, $$\omega $$
ω
, $$\psi $$
ψ
, $$D_{1}^{_{0}}$$
D
1
0
, $$D_{1}^{_{-}}$$
D
1
-
, $$K^{0}$$
K
0
, $$\eta _{c}$$
η
c
, $$D_{s1}^{_{-}}$$
D
s
1
-
and $$\chi _{_{c1}}$$
χ
c
1
as well as the decay constant of $$\pi ^{-}$$
π
-
, $$D^{_{-(*-)}}$$
D
-
(
∗
-
)
, $$K^{-}$$
K
-
, $$\rho ^{-}$$
ρ
-
, $$D_{1}^{_{-}}$$
D
1
-
, $$a_{1}^{-}$$
a
1
-
and $$D_{s}^{_{-(*-)}}$$
D
s
-
(
∗
-
)
are estimated in this study. A comparison is also made between our results and the experimental values of the masses and decay constants. Our results for strong couplings are also compared with the three point sum rule (3PSR) and light-cone QCD sum rule (LCSR) predictions.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)