Abstract
AbstractWe show that the physical conditions which induce the Thakurta metric, recently studied by Bœhm et al. in the context of time-dependent black hole masses, correspond to a single accreting compact object in the entire Universe filled with isotropic non-interacting dust. In such a case, accretion physics is not local but tied to the properties of the whole Universe. We show that radiation, primordial black holes or particle dark matter cannot produce the specific energy flux required for supporting the mass growth of the compact objects described by the Thakurta metric. In particular, this solution does not apply to black hole binaries. We conclude that compact dark matter candidates and their mass growth cannot be described by the Thakurta metric, and thus existing constraints on the primordial black hole abundance from the LIGO-Virgo and the CMB measurements remain valid.
Funder
European Regional Development Fund
Eesti Teadusagentuur
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献