Isotropic exact solutions in $$F(R,Y,\phi )$$ gravity via Noether symmetries

Author:

Waheed Saira,Nawazish Iqra,Zubair M.ORCID

Abstract

AbstractThe present article investigates the existence of Noether and Noether gauge symmetries of flat Friedman–Robertson–Walker universe model with perfect fluid matter ingredients in a generalized scalar field formulation namely $$f(R,Y,\phi )$$ f ( R , Y , ϕ ) gravity, where R is the Ricci scalar and Y denotes the curvature invariant term defined by $$Y=R_{\alpha \beta }R^{\alpha \beta }$$ Y = R α β R α β , while $$\phi $$ ϕ represents scalar field. For this purpose, we assume different general cases of generic $$f(R,Y,\phi )$$ f ( R , Y , ϕ ) function and explore its possible forms along with field potential $$V(\phi )$$ V ( ϕ ) by taking constant and variable coupling function of scalar field $$\omega (\phi )$$ ω ( ϕ ) . In each case, we find non-trivial symmetry generator and its related first integrals of motion (conserved quantities). It is seen that due to complexity of the resulting system of Lagrange dynamical equations, it is difficult to find exact cosmological solutions except for few simple cases. It is found that in each case, the existence of Noether symmetries leads to power law form of scalar field potential and different new types of generic function. For the acquired exact solutions, we discuss the cosmology generated by these solutions graphically and discuss their physical significance which favors the accelerated expanding eras of cosmic evolution.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3