$$A_0$$-condensation in quark-gluon plasma with finite baryon density

Author:

Bordag M.ORCID,Skalozub V.

Abstract

AbstractIn the present paper, we return to the problem of spontaneous generation of the $$A_0$$ A 0 -background field in QCD at finite temperature and a quark chemical potential, $$\mu $$ μ . On the lattice, this problem was studied by different approaches where an analytic continuation to the imaginary potential $$i \mu $$ i μ has been used. Here we consider both, real and imaginary chemical potential, analytically within the two-loop gauge-fixing independent effective potential $$W_{eff.}$$ W e f f . . We realize the gauge independence in to ways: (1) on the base of Nielsen’s identity and (2) expressing the potential in terms of Polyakov’s loop. Firstly we reproduce the known expressions in terms of Bernoulli’s polynomials for the gluons and quarks. Then, we calculate the $$\mu $$ μ -dependence, either for small $$\mu $$ μ as expansion or numerically for finite $$\mu $$ μ , real and imaginary. One result is that the chemical potential only weakly changes the values of the condensate fields, but quite strongly deepens the minima of the effective potential. We investigate the dependence of Polyakov’s loop in the minimum of the effective potential, thermodynamic pressure and Debye’s mass on the chemical potential. Comparisons with other results are given.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3