Thermoelectric properties of the (an-)isotropic QGP in magnetic fields

Author:

Zhang He-Xia,Kang Jin-Wen,Zhang Ben-WeiORCID

Abstract

AbstractThe Seebeck effect and the Nernst effect, which reflect the appearance of electric fields along x-axis and along y-axis ($$E_{x}$$ E x and $$E_{y}$$ E y ), respectively, induced by the thermal gradient along x-axis, are studied in the QGP at an external magnetic field along z-axis. We calculate the associated Seebeck coefficient ($$S_{xx}$$ S xx ) and Nernst signal (N) using the relativistic Boltzmann equation under the relaxation time approximation. In an isotropic QGP, the influences of magnetic field (B) and quark chemical potential ($$\mu _{q}$$ μ q ) on these thermoelectric transport coefficients are investigated. In the presence (absence) of weak magnetic field, we find $$S_{xx}$$ S xx for a fixed $$\mu _{q}$$ μ q is negative (positive) in sign, indicating that the dominant carriers for converting heat gradient to electric field are negatively (positively) charged quarks. The absolute value of $$S_{xx}$$ S xx decreases with increasing temperature. Unlike $$S_{xx}$$ S xx , the sign of N is independent of charge carrier type, and its thermal behavior displays a peak structure. In the presence of strong magnetic field, due to the Landau quantization of transverse motion of (anti-)quarks perpendicular to magnetic field, only the longitudinal Seebeck coefficient ($$S_{zz}$$ S zz ) exists. Our results show that the value of $$S_{zz}$$ S zz at a fixed $$\mu _{q}$$ μ q in the lowest Landau level (LLL) approximation always remains positive. Within the effect of high Landau levels, $$S_{zz}$$ S zz exhibits a thermal structure similar to that in the LLL approximation. As the Landau level increases further, $$S_{zz}$$ S zz decreases and even its sign changes from positive to negative. The computations of these thermoelectric transport coefficients are also extended to a medium with momentum-anisotropy induced by initial spatial expansion as well as strong magnetic field.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3