Novel thick brane solutions with U(1) symmetry breaking

Author:

Peyravi MarziehORCID,Riazi Nematollah,Lobo Francisco S. N.ORCID

Abstract

AbstractIn this work, using two scalar fields ($$\phi $$ ϕ , $$\psi $$ ψ ) coupled to 4 + 1 dimensional gravity, we construct novel topological brane solutions through an explicit U(1) symmetry breaking term. The potential of this model is constructed so that two distinct degenerate vacua in the $$\phi $$ ϕ field exist, in analogy to the $$\phi ^{4}$$ ϕ 4 potential. Therefore, brane solutions appear due to the vacuum structure of the $$\phi $$ ϕ field. However, the topology and vacuum structure in the $$\psi $$ ψ direction depends on the symmetry breaking parameter $$\beta ^{2}$$ β 2 , which leads to different types of branes. As a result, one can interpret the present model as a combination of a $$\phi ^{4}$$ ϕ 4 brane with an auxiliary field, which leads to deviations from the $$\phi ^{4}$$ ϕ 4 system with the brane achieving a richer internal structure. Furthermore, we analyse in detail the behaviour of the superpotentials, the warp factors, the Ricci and Kretschmann scalars and the Einstein tensor components. In addition to this, we explore the stability of the brane in terms of the free parameters of the model. The analysis presented here complements previous work and is sufficiently novel to be interesting.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3